2003年,人类基因组测序计划完成,至今已有20年。当年的“大工程”花费38亿美元,而20年后的今天,基因组测序成本已下跌8个“0”,降至不到100美元。很多人会问,基因组测序大幅降价了,为什么还不能实现“随手测”?秋冬季呼吸道疾病高发,如果咳嗽发热的人能“随手测”出感染了哪种病原体不就能更快地对症下药吗?
以“1%”开了个好头
“基因组测序技术现在有了,要用它做些什么?”2006年,国家“863”计划(国家高技术研究发展计划)在人民大会堂召开专家组会议,时任“863”计划“功能基因组与蛋白质组”重大项目首席科学家的杨焕明刚一坐下,就问坐在身边的863计划生物医药领域专家组组长詹启敏。
两人不谋而合:应该立刻在我国开展肿瘤基因组学的研究。
这次简短的谈话,不仅让基因组学和医学两大领域实现跨界融合,也成为我国进行肿瘤基因组学研究的起点。
几乎同一时间,美国国家癌症研究所和美国国家人类基因组研究所开启了癌症基因组图谱计划。
“大家都希望能让基因测序这一新技术尽快造福人类。”詹启敏说,无论是国际上还是我国都在第一时间以肿瘤为切入点开展“基建式”的解码分析研究。
由于起步早、进展好,中国后来成功加入国际癌症基因组联盟,并在该联盟中发挥了重要作用。
能够在基因组学研究领域始终保持不落人后,得益于我国二十多年前对人类基因组计划的积极参与——
历时13年的人类基因组计划,在多年筹备后终于在1990年正式启动,随后美国、英国、法国、德国、日本等相继加入,计划用1美元破译1对碱基(组成人类遗传序列“密码”的最小单元,可理解为一个数字或字母)的投入,测定组成人类基因组的30亿个碱基对序列。
1997年,由中国遗传学会青年委员会组织的青年遗传学工作者讨论会在张家界召开,杨焕明、汪建、于军等科学家倡议中国也加入其中。这一工作随后得到中国科学院和国家南、北方基因组中心同行的支持。1999年7月,中国向人类基因组计划提出申请。
1999年9月1日,杨焕明在第五次人类基因组测序战略会议上表示,中国有能力在2000年4月完成1%的任务,并递交了已经完成的人类基因组序列的70万个碱基对测序结果,让与会者相信中国有能力参与和完成申领的任务。
最终,中国得到完成人类3号染色体短臂上一个约30Mb区域的测序任务。该区域约占人类整个基因组的1%。
价格走向平民化
20年来,技术不断迭代。
2023年,利用最新测序设备进行超过400人的全基因组测序耗时仅需2.5天。
测序技术已实现了自动化、智能化迭代。如今的测序场景已经完全没有了20年前“黑板上讨论、演算纸上验证”的模样。
一个六轴机械臂位于中心,不同的功能单元环绕着它,除此之外还有两条四轴机械臂“助手”辅助“主臂”工作,进行基因测序。它们旋转、停顿、放样、配合分秒不差、毫厘不偏。控温、指示、判读,一切发生在毫秒之间。
最先进的基因测序流程已经几乎完全由机器掌控。指甲盖大小的芯片上,有成千上万个小反应器组成测序单元。所有操作需要的速度和精度是人力难以企及的,全流程自动化串联将人力的不确定性完全剔除。当年的任务如果放在今天,人力和耗时都将大幅下降。
20年来,基因测序价格的每一次“断崖式”下降都成为引发关注的焦点。“人类基因组计划完成过程中创新了很多方法和拼接算法。随着效率不断提高,那之后几年,测序成本下降规律一直符合摩尔定律。”华大生命科学研究院院长徐讯说,但那时,给人体30亿对碱基测序仍是“大工程”。因为很多技术还不普及,比如40年前的计算机,庞大而昂贵,普通人根本用不起。
2007年5月31日,DNA之父詹姆斯·沃森拿到了装有他本人基因组图谱数据的光盘。这是世界上第1份个人版基因组图谱,花费了100万美元,不及当年38亿美元的万分之三。
“一条由数十亿碱基串起的‘链子’要进行测序,不可能整条链进行,需要断裂成小片段测序后再拼接起来。”徐讯说,测量一个人的基因组听起来像测量一条序列,但其实要进行无数条序列的测序。这就是为什么一次能进行大量测量的高通量技术一“入场”就再次改变了成本下降的曲线。
2008年,以高通量技术为“底气”,基因测序行业提出5000美元的成本目标。五年后的高通量测序更成熟、更高效,也实现了5000美元的目标。这是基因测序走向平民化的第一步。
“人们相信成本可以再降,信息化、自动化、智能化,以及生物信息处理效率相关的算力算法等都在演进。”徐讯说,测序技术越来越趋近普通人负担得起的价格,一个人的基因组测序成本终于在2023年降至不到100美元。
未来万物皆可“测”
在学术领域,基因编辑技术、阿尔法折叠、肿瘤疫苗、基因靶向药物……以人类基因组计划为起点,生命科学领域诞生了一个又一个时代“新星”。
生活中,基因溯源、药物敏感预测、本底基因护肤指南甚至为高空坠下的烟头溯源等都是基因技术展露身手的场景。
我国在生命组学领域具备了一定研发的能力。中国生物技术发展中心前沿技术处副处长田金强介绍说,基因测序仪实现了核心技术自主可控,在通量、质量、速度、性价比等方面与国际竞争对手并驾齐驱;基于高密度、大视场芯片及高通量测序的空间组学技术处于国际领先地位;蛋白质组研究一直走在世界前列;单细胞测序设备基本实现了国产化……
面向未来,人们对生物与信息技术的加速融合寄予厚望。“在三维成像、虚拟现实等技术的支撑下,或许将来可以亲眼看到纳米级生命大分子之间的相互作用。”詹启敏说,超分辨可视化的前沿技术正在路上,获得基因序列只是初步了解,如果能够亲眼看到自己一段一段基因的“动作”,甚至看到蛋白分子与它们的动态“交流”,将有利于形成更具象的认知。
新科技的浪潮奔涌而来。它们广泛融合、碰撞创新,一日千里的发展势头推动着科技创新一路向前。“一些重要装备的核心零部件和关键原料的研发和生产能力仍有待提高。”田金强坦言。
一切科技创新都是为了让人们更好地享受基因技术带来的健康红利。下一个20年,基因技术会像信息技术、电力技术一样普及吗?
“尽管基因测序设备目前还是科研机构或医院才用得起的设备,但技术的进步会以社会需求为驱动,我相信家用型的基因检测终端应该很快会出来。这在技术上已经是可以实现的。”徐讯说。
有了家用基因测序仪,人们不仅可以及时地在秋冬季感染高峰时及时检测传染源,避免滥用抗生素,还可以做很多有趣的事情,比如认识郊野公园中的很多物种,测一测餐桌上的牛肉品种……
生命“解码”在路上
普通人离基因技术越来越近,但对于人类基因组计划的亲历者和继承者们,仍有一个终极问题令他们魂牵梦萦。“生命的本源问题,至今没有答案。”詹启敏解释说,同一个受精卵细胞为什么会发育成不同的组织细胞,基因表达的次序与时空存在一定的关系,但至今是个谜。
为了揭开谜底,时空组学技术近些年发展起来。“国际同行2018年发明相关的技术,我们也没有落后。”徐讯介绍,华大基因创新地把喷墨打印技术应用于测序芯片上,实现了时空组学技术的高通量、高分辨率和大视场,并基于该技术成功绘制了全球首个小鼠胚胎发育时空图谱,实现了对蝾螈大脑受损后恢复完整的这一过程中,基因表达的时间和空间变化的详尽记录等重要突破。
时空组学技术是不是人类解码“生命天书”的最后一块“拼图”?这项技术在未来二十年将为人类生命健康带来哪些突破性进展?我们将拭目以待。
据《科技日报》